NOTE
The type of bedding used for storm drain pipe shall be sand, clean gravel, or other granular material. Fill or granular fill shall be used in place of compacted earth fill which is subject to settlement. The section in view shall be over excavated to provide easy access for excavation and installation of storm drain pipe.
SEQUENCE OF CONSTRUCTION

1. PERMIT ISSUED
2. THE STORMWATER MANAGEMENT FIELD MUST BE
 COMPLETED AS PER THE STORMWATER
 PERMITS AND CONSTRUCTION PLANS.
3. THE CONSTRUCTION PLAN MUST BE CONSTRUCTED
 BASED ON THE INCURRIBLE NO-LOADING LIMITS.
4. INSTALL AND PLUMB ALL STORMWATER
 CONTROL MEASURES AND DEVICES.
5. CONSTRUCT THE PERMANENT STORM DRAINAGE
 SYSTEM AND TEMPORARY DRAINAGE TO SEDIMENT
 CARRIERS.
6. SPREAD DRAINS PAVED ASPHALT CONSTRUCT CURB
 LINES AND CURB AND GUTTER.
7. SEED DISTURBED AREAS WITHIN 28 DAYS OF
 COMPACTING OR GRADES IN ORDER TO STABILIZE
 THE SITE.
8. COMPLETE PERMANENT STORM DRAINAGE SYSTEM
 MEASURES AND STABILIZE ANY REMAINING
 AREAS.

STORMWATER MANAGEMENT FOR THIS PROJECT HAS BEEN
PROVIDED IN BURLIEGH MANOR
SECTION 3 ALFA Z, F-98-AC

72/1 SHEET 14 OF 25 1/20-97
CONSTRUCTION SPECIFICATIONS FOR CM-18:

1. The area under reclamation shall be cleared, grubbed and stripped of any vegetation and top soil. The pond area shall be cleaned.

2. The fill material for the embankment shall be free of rocks or other debris.

3. The filling shall be compacted and the embankment shall be shaped to a smooth, rounded profile. The top of the embankment shall be free of any debris and all trash.

4. All fill slopes shall be 2:1 or flatter and shall be free of any debris.

5. The top of the embankment shall be free of any debris and all trash.

6. Storage area provided shall be sufficient to accommodate the volume required for the project.

7. Pipe size shall be based on the design flow and the size of the outlet structure.

8. Pipe size shall be selected to accommodate the anticipated flow rate.

9. The structure shall be designed to accommodate the anticipated flow rate.

10. The structure shall be designed to accommodate the anticipated flow rate.

11. The structure shall be designed to accommodate the anticipated flow rate.

12. The structure shall be designed to accommodate the anticipated flow rate.