SEDIMENT CONTROL PHASING PLAN

PHASE 2 = 10.6 Ac.
PHASE 1 = 13.9 Ac.

SCALE: 1" = 150'

SEDIMENT TRAP #1
SEDIMENT TRAP #2
SEDIMENT TRAP #3
SEDIMENT TRAP #4

SEDIMENT TRAP BACKFILL PLAN

WESTMOUNT - PHASE 1
CREDITED OPEN SPACE LOT 1, LOTS 3-52, OPEN SPACE LOTS 53-71
AND NON-BUILDABLE BULK PARCELS B & C

PREPARED FOR:
NEWMARK DEVELOPMENT CORPORATION
3700 MARRIOTT LANE
ELGIN IL 60123
ATTN: TREVOR CORNWELL

ENGINEERS CERTIFICATE

GLW Grimm & Yanish, LTD. P.A.
1244 E. BELLAGIO DR., SUITE 200
ELGIN, IL 60123
PHONE: 847-533-4600 FAX: 847-533-9010

SIGNED:

CONTRACTOR TO PROVIDE 36" PIPE IN 2" DIA.
AT 4' OC FOR A TOTAL OF 0.44 PERFORATIONS

TOP OF DRAIN + 2" VALVES

DRAIN DOWN DEVICE AT TRAP #4

TOP OF DRAIN + 4" VALVES

GRAPHIC SCALE
ESD COMPUTATION SUMMARY - COUNTY

<table>
<thead>
<tr>
<th>S.N.</th>
<th>AREA</th>
<th>DISTANCE</th>
<th>SLOPE</th>
<th>DRAINAGE</th>
<th>AREA</th>
<th>求めたarea</th>
<th>DISTANCE</th>
<th>SLOPE</th>
<th>DRAINAGE</th>
<th>AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

ESD COMPUTATION SUMMARY - STATE

<table>
<thead>
<tr>
<th>S.N.</th>
<th>AREA</th>
<th>DISTANCE</th>
<th>SLOPE</th>
<th>DRAINAGE</th>
<th>AREA</th>
<th>求めたarea</th>
<th>DISTANCE</th>
<th>SLOPE</th>
<th>DRAINAGE</th>
<th>AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

NOTES:
- All values are computed based on the provided data. Additional calculations may be required.
- The results are rounded to the nearest whole number.

ON-LOT STORMWATER MANAGEMENT PRACTICES

- **Pond Inlet:** Pond inlets should be designed and constructed to ensure effective stormwater management. Inlets should be equipped with overflow controls and sediment traps.
- **Culvert Inlet:** Culverts should be designed to handle the expected flow rates and to ensure adequate hydraulic capacity. Culverts should be lined with permeable materials to reduce the impact on the surrounding environment.
- **Retaining Walls:** Retaining walls should be installed to prevent erosion and to maintain the stability of the embankments.
- **Soil and Vegetation:** Soil and vegetation management practices should be implemented to minimize soil erosion and to enhance water quality.

###commended practices:

- **Soil Management:** Implement soil management practices such as contour farming and strip cropping to manage soil erosion.
- **Vegetation:** Planting vegetation such as native grasses and shrubs can help reduce stormwater runoff and improve water quality.
- ** BMPs:** Implementing BMPs such as bioretention cells, detention basins, and permeable pavements can help manage stormwater runoff.

SWMM NARRATIVE

SUMMARY:

- **Reduction in Stormwater:** The project has been designed to reduce stormwater runoff and to improve water quality in the surrounding environment.
- **Construction Practices:** Implementing construction practices such as minimizing the exposure of soil to rain and using temporary erosion control measures can help reduce stormwater runoff.
- **Maintenance:** Regular maintenance and monitoring of the stormwater management practices are essential to ensure their effectiveness.

CONCLUSIONS:

- The project meets the requirements of the stormwater management regulations and is expected to contribute to the sustainable management of stormwater.
- The project has been designed and constructed to ensure the protection of the environment and to promote public health and welfare.

PREPARED FOR:

- **WEATHER DEVELOPMENT CORPORATION**
- **E.C.L.S.**
- **A.T.**
- **S.**
- **C.**

PROFESSIONAL CERTIFICATION:

- **WEATHER TELEGRAPH CORPORATION**
- **E.C.L.S.**
- **A.T.**
- **S.**
- **C.**

AS SHOWN:

- **R-10**

DATE:

- **23/08/19**

S.H.A. TRACKING NO.

- **K.A.O.H.O.I.B.X.**

W.T.

- **206**

WESTMOUNT - PHASE I

CREDITEO OPEN SPACE LOT 1, LOTS 5-12, OPEN SPACE LOTS 57-71 AND NON-BUILDABLE BULK PARCELS B & C

DESCRIPTION OF REPOSSESSION BUILD SUBDIVISIONs AND FINAL PROGRESS REPORT DATED 5/8/19

A DESCRIPTION OF REPOSSESSION BUILD SUBDIVISIONs AND FINAL PROGRESS REPORT DATED 5/8/19

SHA TRACKING NO.

- **K.A.O.H.O.I.B.X.**

W.T.

- **206**

F 15-087