CONSTRUCTION PLAN
SIMPSON MILL
CEDAR LANE, ROUTE 32 RAMP AND
GRACE DRIVE IMPROVEMENTS

GENERAL NOTES:
1. THE CONSTRUCTION DRAWINGS ARE SUBJECT TO THE ELECTION OF ANY LOCAL CODES.
3. ALL DRAWINGS ARE TO SCALE.
4. ALL DOWNSCALES ARE TO SCALE.
5. ALL CONSTRUCTION DRAWINGS ARE TO SCALE.
6. ALL MEASUREMENTS ARE TO SCALE.
7. ALL DIMENSIONS ARE TO SCALE.
8. ALL ANSI STANDARDS ARE TO SCALE.
9. ALL ANSI STANDARDS ARE TO SCALE.
10. ALL ANSI STANDARDS ARE TO SCALE.
11. ALL ANSI STANDARDS ARE TO SCALE.
12. ALL ANSI STANDARDS ARE TO SCALE.
13. ALL ANSI STANDARDS ARE TO SCALE.
14. ALL ANSI STANDARDS ARE TO SCALE.
15. ALL ANSI STANDARDS ARE TO SCALE.
16. ALL ANSI STANDARDS ARE TO SCALE.
17. ALL ANSI STANDARDS ARE TO SCALE.
18. ALL ANSI STANDARDS ARE TO SCALE.
19. ALL ANSI STANDARDS ARE TO SCALE.
20. ALL ANSI STANDARDS ARE TO SCALE.
21. ALL ANSI STANDARDS ARE TO SCALE.
22. ALL ANSI STANDARDS ARE TO SCALE.
23. ALL ANSI STANDARDS ARE TO SCALE.
24. ALL ANSI STANDARDS ARE TO SCALE.
25. ALL ANSI STANDARDS ARE TO SCALE.
26. ALL ANSI STANDARDS ARE TO SCALE.
27. ALL ANSI STANDARDS ARE TO SCALE.
28. ALL ANSI STANDARDS ARE TO SCALE.
29. ALL ANSI STANDARDS ARE TO SCALE.
30. ALL ANSI STANDARDS ARE TO SCALE.
31. ALL ANSI STANDARDS ARE TO SCALE.
32. ALL ANSI STANDARDS ARE TO SCALE.
33. ALL ANSI STANDARDS ARE TO SCALE.
34. ALL ANSI STANDARDS ARE TO SCALE.
35. ALL ANSI STANDARDS ARE TO SCALE.
36. ALL ANSI STANDARDS ARE TO SCALE.
37. ALL ANSI STANDARDS ARE TO SCALE.
38. ALL ANSI STANDARDS ARE TO SCALE.
39. ALL ANSI STANDARDS ARE TO SCALE.
40. ALL ANSI STANDARDS ARE TO SCALE.
41. ALL ANSI STANDARDS ARE TO SCALE.
42. ALL ANSI STANDARDS ARE TO SCALE.
43. ALL ANSI STANDARDS ARE TO SCALE.
44. ALL ANSI STANDARDS ARE TO SCALE.
45. ALL ANSI STANDARDS ARE TO SCALE.
46. ALL ANSI STANDARDS ARE TO SCALE.
47. ALL ANSI STANDARDS ARE TO SCALE.
48. ALL ANSI STANDARDS ARE TO SCALE.
49. ALL ANSI STANDARDS ARE TO SCALE.
50. ALL ANSI STANDARDS ARE TO SCALE.
51. ALL ANSI STANDARDS ARE TO SCALE.
52. ALL ANSI STANDARDS ARE TO SCALE.
53. ALL ANSI STANDARDS ARE TO SCALE.
54. ALL ANSI STANDARDS ARE TO SCALE.
55. ALL ANSI STANDARDS ARE TO SCALE.
56. ALL ANSI STANDARDS ARE TO SCALE.
57. ALL ANSI STANDARDS ARE TO SCALE.
58. ALL ANSI STANDARDS ARE TO SCALE.
59. ALL ANSI STANDARDS ARE TO SCALE.
60. ALL ANSI STANDARDS ARE TO SCALE.
61. ALL ANSI STANDARDS ARE TO SCALE.
62. ALL ANSI STANDARDS ARE TO SCALE.
63. ALL ANSI STANDARDS ARE TO SCALE.
64. ALL ANSI STANDARDS ARE TO SCALE.
65. ALL ANSI STANDARDS ARE TO SCALE.
66. ALL ANSI STANDARDS ARE TO SCALE.
67. ALL ANSI STANDARDS ARE TO SCALE.
68. ALL ANSI STANDARDS ARE TO SCALE.
69. ALL ANSI STANDARDS ARE TO SCALE.
70. ALL ANSI STANDARDS ARE TO SCALE.
71. ALL ANSI STANDARDS ARE TO SCALE.
72. ALL ANSI STANDARDS ARE TO SCALE.
73. ALL ANSI STANDARDS ARE TO SCALE.
74. ALL ANSI STANDARDS ARE TO SCALE.
75. ALL ANSI STANDARDS ARE TO SCALE.
76. ALL ANSI STANDARDS ARE TO SCALE.
77. ALL ANSI STANDARDS ARE TO SCALE.
78. ALL ANSI STANDARDS ARE TO SCALE.
79. ALL ANSI STANDARDS ARE TO SCALE.
80. ALL ANSI STANDARDS ARE TO SCALE.
81. ALL ANSI STANDARDS ARE TO SCALE.
82. ALL ANSI STANDARDS ARE TO SCALE.
83. ALL ANSI STANDARDS ARE TO SCALE.
84. ALL ANSI STANDARDS ARE TO SCALE.
85. ALL ANSI STANDARDS ARE TO SCALE.
86. ALL ANSI STANDARDS ARE TO SCALE.
87. ALL ANSI STANDARDS ARE TO SCALE.
88. ALL ANSI STANDARDS ARE TO SCALE.
89. ALL ANSI STANDARDS ARE TO SCALE.
90. ALL ANSI STANDARDS ARE TO SCALE.
91. ALL ANSI STANDARDS ARE TO SCALE.
92. ALL ANSI STANDARDS ARE TO SCALE.
93. ALL ANSI STANDARDS ARE TO SCALE.
94. ALL ANSI STANDARDS ARE TO SCALE.
95. ALL ANSI STANDARDS ARE TO SCALE.
96. ALL ANSI STANDARDS ARE TO SCALE.
97. ALL ANSI STANDARDS ARE TO SCALE.
98. ALL ANSI STANDARDS ARE TO SCALE.
99. ALL ANSI STANDARDS ARE TO SCALE.
100. ALL ANSI STANDARDS ARE TO SCALE.
101. ALL ANSI STANDARDS ARE TO SCALE.
102. ALL ANSI STANDARDS ARE TO SCALE.
103. ALL ANSI STANDARDS ARE TO SCALE.
104. ALL ANSI STANDARDS ARE TO SCALE.
105. ALL ANSI STANDARDS ARE TO SCALE.
106. ALL ANSI STANDARDS ARE TO SCALE.
107. ALL ANSI STANDARDS ARE TO SCALE.
108. ALL ANSI STANDARDS ARE TO SCALE.
109. ALL ANSI STANDARDS ARE TO SCALE.
110. ALL ANSI STANDARDS ARE TO SCALE.
111. ALL ANSI STANDARDS ARE TO SCALE.
112. ALL ANSI STANDARDS ARE TO SCALE.
113. ALL ANSI STANDARDS ARE TO SCALE.
114. ALL ANSI STANDARDS ARE TO SCALE.
115. ALL ANSI STANDARDS ARE TO SCALE.
116. ALL ANSI STANDARDS ARE TO SCALE.
117. ALL ANSI STANDARDS ARE TO SCALE.
118. ALL ANSI STANDARDS ARE TO SCALE.
119. ALL ANSI STANDARDS ARE TO SCALE.
120. ALL ANSI STANDARDS ARE TO SCALE.
121. ALL ANSI STANDARDS ARE TO SCALE.
122. ALL ANSI STANDARDS ARE TO SCALE.
123. ALL ANSI STANDARDS ARE TO SCALE.
124. ALL ANSI STANDARDS ARE TO SCALE.
125. ALL ANSI STANDARDS ARE TO SCALE.
126. ALL ANSI STANDARDS ARE TO SCALE.
127. ALL ANSI STANDARDS ARE TO SCALE.
128. ALL ANSI STANDARDS ARE TO SCALE.
129. ALL ANSI STANDARDS ARE TO SCALE.
130. ALL ANSI STANDARDS ARE TO SCALE.
131. ALL ANSI STANDARDS ARE TO SCALE.
132. ALL ANSI STANDARDS ARE TO SCALE.
133. ALL ANSI STANDARDS ARE TO SCALE.
134. ALL ANSI STANDARDS ARE TO SCALE.
135. ALL ANSI STANDARDS ARE TO SCALE.
136. ALL ANSI STANDARDS ARE TO SCALE.
137. ALL ANSI STANDARDS ARE TO SCALE.
138. ALL ANSI STANDARDS ARE TO SCALE.
139. ALL ANSI STANDARDS ARE TO SCALE.
140. ALL ANSI STANDARDS ARE TO SCALE.
141. ALL ANSI STANDARDS ARE TO SCALE.
142. ALL ANSI STANDARDS ARE TO SCALE.
143. ALL ANSI STANDARDS ARE TO SCALE.
144. ALL ANSI STANDARDS ARE TO SCALE.
145. ALL ANSI STANDARDS ARE TO SCALE.
146. ALL ANSI STANDARDS ARE TO SCALE.
147. ALL ANSI STANDARDS ARE TO SCALE.
148. ALL ANSI STANDARDS ARE TO SCALE.
149. ALL ANSI STANDARDS ARE TO SCALE.
150. ALL ANSI STANDARDS ARE TO SCALE.
151. ALL ANSI STANDARDS ARE TO SCALE.
152. ALL ANSI STANDARDS ARE TO SCALE.
153. ALL ANSI STANDARDS ARE TO SCALE.
154. ALL ANSI STANDARDS ARE TO SCALE.
155. ALL ANSI STANDARDS ARE TO SCALE.
156. ALL ANSI STANDARDS ARE TO SCALE.
157. ALL ANSI STANDARDS ARE TO SCALE.
158. ALL ANSI STANDARDS ARE TO SCALE.
159. ALL ANSI STANDARDS ARE TO SCALE.
160. ALL ANSI STANDARDS ARE TO SCALE.
161. ALL ANSI STANDARDS ARE TO SCALE.
162. ALL ANSI STANDARDS ARE TO SCALE.
163. ALL ANSI STANDARDS ARE TO SCALE.
164. ALL ANSI STANDARDS ARE TO SCALE.
165. ALL ANSI STANDARDS ARE TO SCALE.
166. ALL ANSI STANDARDS ARE TO SCALE.
167. ALL ANSI STANDARDS ARE TO SCALE.
168. ALL ANSI STANDARDS ARE TO SCALE.
169. ALL ANSI STANDARDS ARE TO SCALE.
170. ALL ANSI STANDARDS ARE TO SCALE.
171. ALL ANSI STANDARDS ARE TO SCALE.
172. ALL ANSI STANDARDS ARE TO SCALE.
173. ALL ANSI STANDARDS ARE TO SCALE.
174. ALL ANSI STANDARDS ARE TO SCALE.
175. ALL ANSI STANDARDS ARE TO SCALE.
176. ALL ANSI STANDARDS ARE TO SCALE.
177. ALL ANSI STANDARDS ARE TO SCALE.
178. ALL ANSI STANDARDS ARE TO SCALE.
179. ALL ANSI STANDARDS ARE TO SCALE.
180. ALL ANSI STANDARDS ARE TO SCALE.
181. ALL ANSI STANDARDS ARE TO SCALE.
182. ALL ANSI STANDARDS ARE TO SCALE.
183. ALL ANSI STANDARDS ARE TO SCALE.
184. ALL ANSI STANDARDS ARE TO SCALE.
185. ALL ANSI STANDARDS ARE TO SCALE.
186. ALL ANSI STANDARDS ARE TO SCALE.
187. ALL ANSI STANDARDS ARE TO SCALE.
188. ALL ANSI STANDARDS ARE TO SCALE.
189. ALL ANSI STANDARDS ARE TO SCALE.
190. ALL ANSI STANDARDS ARE TO SCALE.
191. ALL ANSI STANDARDS ARE TO SCALE.
192. ALL ANSI STANDARDS ARE TO SCALE.
193. ALL ANSI STANDARDS ARE TO SCALE.
194. ALL ANSI STANDARDS ARE TO SCALE.
195. ALL ANSI STANDARDS ARE TO SCALE.
196. ALL ANSI STANDARDS ARE TO SCALE.
197. ALL ANSI STANDARDS ARE TO SCALE.
198. ALL ANSI STANDARDS ARE TO SCALE.
199. ALL ANSI STANDARDS ARE TO SCALE.
200. ALL ANSI STANDARDS ARE TO SCALE.

IMPROVEMENT AREA #1
SWM AREA - SITE #1
RADIUS ADJUSTMENT AND LANE RECONFIGURATION

VEHICULAR INGRESS AND
EGRESS RESTRICTED

MARYLAND ROUTE 32
PRINCIPAL ARTERIAL
NEW VANS
SHA PLAT NO: 3319, 33411, 33599

APPROVED HONOR COUNTY DEPARTMENT OF PUBLIC WORKS
APPROVED HONOR COUNTY DEPT. OF PLANNING AND ZONING

BENCHMARK
ENGINEERING, INC.

DATE: JULY 21, 2001
SHEET NO. 1 OF 2
SCALE: AS SHOWN
SHEET SIZE: 22 INCH X 34 INCH

F-12-059
SEQUENCE OF CONSTRUCTION

NOTIFY SEDIMENT CONTROL DIVISION 48 HOURS PRIOR TO START OF WORK.

1. Obtain grading permit (Day 1)
2. Install permanent construction equipment, pumps, и other work protection. Utilize sediment control equipment fitted with closed covers (Day 1-10)
3. Have all construction work and excavation completed (Day 10-15)
4. Install all site features (Day 20-30)
5. Submit all permits, certificates, and other information (Day 30-60)

LEGEND

PROPOSED EROSION CONTROL

EXISTING MATERIALS

PROJECT RECOVERY

PROPOSED MATERIALS

EXISTING CONTOURS

PROPOSED CONTOURS

EROSION CONTROL

SIMPSON MILL

BENCHMARK

ENGINEERING, INC.

NO. DATE

SIMPSON MILL

Cedar Lane and Grace Drive Improvements

BENCHMARK

ENGINEERING, INC.

NO. DATE

SIMPSON MILL

Cedar Lane and Grace Drive Improvements

BENCHMARK

ENGINEERING, INC.

NO. DATE

SIMPSON MILL

Cedar Lane and Grace Drive Improvements

BENCHMARK

ENGINEERING, INC.

NO. DATE

SIMPSON MILL

Cedar Lane and Grace Drive Improvements

BENCHMARK

ENGINEERING, INC.

NO. DATE

SIMPSON MILL

Cedar Lane and Grace Drive Improvements

BENCHMARK

ENGINEERING, INC.

NO. DATE

SIMPSON MILL

Cedar Lane and Grace Drive Improvements

BENCHMARK

ENGINEERING, INC.

NO. DATE

SIMPSON MILL

Cedar Lane and Grace Drive Improvements

BENCHMARK

ENGINEERING, INC.

NO. DATE

SIMPSON MILL

Cedar Lane and Grace Drive Improvements

BENCHMARK

ENGINEERING, INC.

NO. DATE

SIMPSON MILL

Cedar Lane and Grace Drive Improvements

BENCHMARK

ENGINEERING, INC.

NO. DATE

SIMPSON MILL

Cedar Lane and Grace Drive Improvements

BENCHMARK

ENGINEERING, INC.

NO. DATE

SIMPSON MILL

Cedar Lane and Grace Drive Improvements

BENCHMARK

ENGINEERING, INC.

NO. DATE

SIMPSON MILL

Cedar Lane and Grace Drive Improvements

BENCHMARK

ENGINEERING, INC.
SIGHT DISTANCE ANALYSIS:

This sight distance analysis was done to determine if a vehicle, approaching from the MD Route 32 Westbound route, would be able to stop in time to avoid an accident at the intersection. The analysis was done by a vehicle traveling on the ramp in enough time to stop. This study is based on a speed of 20 mph for the vehicle that has entered Route 32 onto the ramp. The location of the stopped vehicle is near the traffic light at the stop which is marked. This would be the most likely occurrence of this type of collision. The result of this study was based on the following assumptions:

1. The speed of the vehicle is 20 mph.
2. The stopped vehicle is at the traffic light.
3. The vehicle was able to stop in time to avoid the collision.

Based on the plan view, there are no obstructions to the line of sight between the vehicle at rest and the traveling vehicle. Based on the vertical profile, there are no obstructions to the line of sight between the vehicle at rest and the traveling vehicle. The location of the traffic light, the horizontal geometry, and the vertical geometry do not create a hazardous condition.

LEGEND:

- Project Boundary
- Proposed Contours

SIGHT DISTANCE ANALYSIS:

HOR.: 1" = 30'
VERT.: 1" = 2'

342
339
336
333
330
327

LINE OF SIGHT = 425'
HEIGHT OF EYE = 33.5'
SITE PLAN GRADING PER GP-12-005 AND SDP-12-015
SITE IMPROVEMENTS PER SDP-12-015

PHASE 1: NO STANDARD 12/04/05 - SHOULDER WORK ON ROUTE 52 OF NORTHBOUND SIGHT LINE
PHASE 2: NO STANDARD 04/05 - SHOULDER WORK ON RIDGEWAY
PHASE 3: NO STANDARD 04/05 - SHOULDER WORK ON CENTER ISLAND FOR BOTH NORTHBOUND AND SOUTHBOUND LANE OF OCEAN LANE
PHASE 4: NO STANDARD 12/04/05 - SHOULDER WORK ON CENTER ISLAND FOR SOUTHBOUND LANE OF OCEAN LANE.

MAINTENANCE OF TRAFFIC SCHEMATIC
SCALE: 1" = 20'
SIGN TURN DIRECTIONS FOR SOUTH
BOUND CEDAR LANE
SEE MdMUTCD FOR DETAILS

TO GRACE
DRIVE

PROPOSED SIGN TURN DIRECTIONS
FOR NORTH BOUND CEDAR LANE
SEE MdMUTCD FOR DETAILS

CEDAR LANE

CEDAR LANE
TO SIMPSON
MILL ROAD

SANNER ROAD