NOTES
GENERAL NOTES:

1. THIS BRIDGE HAS BEEN DESIGNED FOR GENERAL SITE CONDITIONS. THE PROJECT ENGINEER SHALL BE RESPONSIBLE FOR THE STRUCTURES SUITABILITY TO THE EXISTING SITE CONDITIONS AND FOR THE HYDRAULIC EVALUATION – INCLUDING SCOUR AND CONFIRMATION OF SOIL CONDITIONS.

2. PRIOR TO CONSTRUCTION, CONTRACTOR MUST VERIFY ALL ELEVATIONS SHOWN THROUGH THE ENGINEER.

3. ONLY CONTECH BRIDGE SOLUTIONS INC. THE CONSPAN APPROVED PRECASTER IN MARYLAND MAY PROVIDE THE STRUCTURE DESIGNED IN ACCORDANCE WITH THESE PLANS.

4. THE USE OF ANOTHER PRECAST STRUCTURE WITH THE DESIGN ASSUMPTIONS USED FOR THE CONSPAN STRUCTURE MAY NOT BE APPLICABLE TO THE CONSTRUCTION. PRECAST STRUCTURE WITH THIS DESIGN AND DRAWING VIOIDS ANY CERTIFICATION OF THIS DESIGN AND WARRANTY. CONTECH BRIDGE SOLUTIONS INC. ASSUMES NO LIABILITY FOR DESIGN OF ANY ALTERNATE OR SIMILAR TYPE STRUCTURES.

5. ALTERNATE STRUCTURES MAY BE CONSIDERED, PROVIDED THAT SIGNED AND SEALED DESIGN DRAWINGS (AND CALCULATIONS) ARE SUBMITTED TO THE ENGINEER 2 WEEKS PRIOR TO THE BID DATE FOR REVIEW AND APPROVAL.

6. PROPOSED ALTERNATE TO A CONSPAN BRIDGE SYSTEM MUST SUBMIT AT LEAST TWO (2) INDEPENDENTLY VERIFIED FULL SCALE LOAD TESTS THAT CONFIRM THE PROPOSED DESIGN METHODOLOGY OF THE THREE (3) DECKARCH STRUCTURES. THE PROPOSED ALTERNATE, UPON SATISFACTORY CONFIRMATION OF DESIGN METHODOLOGY, MAY BE CONSIDERED AN ACCEPTABLE ALTERNATE.

DESIGN DATA
DESIGN LOADING
BRIDGE UNITS: HSB-44
HEADWALLS: EARTH PRESSURE ONLY
MINI-WALLS: EARTH PRESSURE ONLY
DESIGN FULL HEIGHT: 13' 6" MIN. TO 3' 0" MAX.
FROM TOP OF CROWN TO TOP OF PAVEMENT.
DESIGN METHOD: LOAD FACTOR PER ASHTO SPECIFICATION
ASSUMED NET ALLOWABLE SOIL BEARING PRESSURE: 4000 PSF
ASSUMED GROSS ALLOWABLE SOIL BEARING PRESSURE: 4000 PSF

*AT THE TIME OF DESIGN, A GEOTECHNICAL REPORT FOR THE PROJECT SITE WAS NOT AVAILABLE. IT IS THE PROJECT ENGINEER'S OWNERS AND OR THE CONTRACTOR'S RESPONSIBILITY TO VERIFY THAT THE ACTUAL SITE CONDITIONS AT THE TIME OF CONSTRUCTION ARE CONSISTENT WITH THE ASSUMED ALLOWABLE SOIL BEARING PRESSURE WITH A GEOTECHNICAL INVESTIGATION FROM A QUALIFIED GEOTECHNICAL ENGINEER.

MATERIALS
PRECAST UNITS SHALL BE CONSTRUCTED AND INSTALLED IN ACCORDANCE WITH CONSPAN SPECIFICATIONS. CONCRETE FOR FOOTINGS SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 4000 PSI. REINFORCING STEEL FOR FOOTINGS SHALL CONFORM TO ASTM A615 OR A996-Grade 60.

WILLIAM POND
HOWARD COUNTY, MARYLAND

LOCATION PLAN
NOT TO SCALE
TYPICAL BRIDGE UNIT GROUT DETAIL

NOT TO SCALE

NOTE:
FILL ENTIRE KEYWAY INCLUDING MINIMAL 1" Voids BETWEEN BOTTOM OF KEYWAY AND BOTTOM OF PRECAST BRIDGE UNIT LEG WITH GROUT

INSIDE FACE OF PRECAST BRIDGE UNIT
SEE TYPICAL BRIDGE UNIT GROUT DETAIL ON THIS SHEET
T-TFOOTING ELEV. 376.07
6 # TIES @ 1'-0" O.C.
5 - 6" TOP & BOTTOM
S-BEFOOTING ELEV. 376.67
LEAN CONCRETE (2000 PSI MIN.) SUBFOOTING TO ACHIEVE 4000 PSI BEARING CAPACITY
S/SUBFOOTING ELEV. 372.21
NOTES
1. MINIMUM 1" GROUT UNDER WINGWALL LEG & ANCHOR STEM
2. AREA BETWEEN WINGWALL FOOTING AND WINGWALL ANCHOR SHALL BE GROUTED SOLID BEFORE SCAFFOLDING
3. FORM BACKSIDES OF FOOTING TO DIMENSIONS SHOWN ON FOUNDATION PLAN.

TYPICAL WINGWALL GROUT DETAIL

NOT TO SCALE

INSIDE FACE OF PRECAST BRIDGE UNIT
SEE TYPICAL WINGWALL GROUT DETAIL ON THIS SHEET
T-TFOOTING ELEV. 376.07
4" TIES @ 4'-0" O.C.
3 - 6" TOP & BOTTOM
LEAN CONCRETE (2000 PSI MIN.) SUBFOOTING TO ACHIEVE 4000 PSI BEARING CAPACITY
S-BEFOOTING ELEV. 372.21

NO AS BUILT INFORMATION ON THIS SHEET