

CONSTRUCTION SEQUENCE	
INSTALL CONTROLLED FILL AT TOP OF WALL PRIOR TO BEGINNING WAL EXCAVATONS. FIIL MUST BE PLACED IN 8 LOSSE LIFTSAND COMPACTED TO 100% OF DRY DENSITY AS DETEMINED BY THE STANDARD PROCTOR (AASHTO T-99, ASTM D698).	
WALLS SHALL BE BUILT FROM THE TOP DOWN IN ACCORDANCE WTH the staged excavation lifts as shown	
THE FO ExCAVA UNLESS	LLOWING WALL CONSTRUCTION SEQUENCE FOR EACH TION LIFT SHALL BE COMPLETED PRIOR TO NG WORK ON THE NEXT EXCAVATIN IIFT OTHERWISE APPROVED BY THE ENGINEER.
	excavate to stage grade limits TRIM TO FINAL WAL FACE EXCAVATION LINE. INSTALL GEOSYNTHETIC DRAINAGE COMPOSITE PANELS AS SHOWN LACE REINFORCING AND APPLY SHOTCRETE NO EXCAVATION WHCH HAS EXPOSED WALL FACE SHALL BE LEFT UNSTABILIZED BY SHOTCRETE AT THE END OF THE WORK DAY UNLESS ENGINEER APPROVES OTHERWISE.
construct final stage shotcrete facing.	
install permanent shotcrete facing.	
	Composite drainage

	HARDIN-KIGHT ASSOCIATES, INC. GEOTECHNICAL CONSULTANTS 7524 WB8A ROAD, SUITE 100 GLEN BURNIE, MARYAND $(410) 553-0802$ $(410) 553-0808$

Designod By:	Trie:	RETAINING WALL \#1 PROFILE SOIL NAIL AND ROCK ANCHOR LAYO	Date: June 25, 2011
$\begin{gathered} \text { Choodad By: } \mathrm{B}: \\ \text { SEK } \end{gathered}$	ROGER CARTER RECREATION CENTER - GARAGE RETAINING WALL PLANS AND DETAILS RETAINING WALL \#1		Projed
Scale:			Dra

30 controuled fll and excuyaton
2.2 SOIL NAL APPURTENANCES. OTHER MATERAL NOT DETRMENTAL TO THE NALE STEEL 40 PVODE OR TUBE, STEEL, O USED): SECURELY ATTACHED TO THE NAL BAR; SIZED TO POSITION THE NALL BAR
WTHIN IN. OF THE CENTER OF THE RRIHOE SIZE TO STO PIPE INSERTION TO THE BOTTOM OF THE DRILHOLE; AND SILED TO ALOW GROUT
 COMPRESSIVE STRENGTH OF 10.5 MPa 1,500 PSI) AND A MNIMUM 28 -DAY
COMPRESSIV STRENGTH OF 21 MPa (3,000 PSI), PER AASHTO TIO6/ASTM C 109

 MPROVE FLOWABLITT, REDUCE WAAER CONTENT, AND RETARD SET MAY BE USED
GROUT SUBUECT TO REVEW AND ACCEPTANCE BY THE ENGIEER ACCIERATORS ARE NOT PERMMTED. ADMXTURES SHALL BE COMPATBLE WTH THE GROUT
NND MIXED IN ACCORDANCE WTH THE MANEACTURER'S RECOWEN 23 BEARING PLATES, NUTS. AND WELDED STUD SHEAR CONNECTORS.

COMPLETE ANY Clearing and excavation above the wall area in acordance
WTH CARroll county And state of mo reourement before commencing wal EXCAVATION. DO NOT PERFORM ANY OF THE WARMENTS BEFORE COMMENCING WAL The wall construction. place the up to Approximately 6 feet of fill MATERILL MUST BE APPROVED BY THE GEOTECHNICAL ENGINEER AND COMPACTED TO A MNNUM OF 100% O THE MAXIMUM DRY DENSITY AS DETERMNED BY THE STANDARD
PROCTOR (AASHTO T-92 ASM DGO8) PROCTOR (AASHLO T-99, ASTM D698) UNDER THE SUPERYSION OF THE GEOTECHNLAL
ENGINERS OUALFED REPRESENTATVE. PERFRORM EXCAVATION FOR THE WALL IN LIFTS CONCURENT WTH SOI NALL NSTALAATION ANN SHOTCRETE PLACEMENT. DO NOT THE VERTICAL NALL SPACING PLUS THE REQUIRED REINFORCING LAP OR THE SHORTTERM STAND-UP HEIGHT OF THE GROUND, WHHCHEVER IS LESS, COMPLETE SEXCAVATIO if it can be demonstrated the delay wll not adversely affect the PLACE TO CONTAN THE LSE A STABGLZANG BERM OF SOLL MAY BE LEFT EXCAVATE TO THE NEXT LOWER LIFT UNTL NALL INSTALLATION, RENFORCED
SHOTCRETE PLACEMENT ATACHMENT OE EARING SHOTCRETE PLACEMENT, ATTACHMENT OF BEARNG PLATES AND NUTS, AND NALL
TESTING HAVE BEEN COMPLEETED AND ACCEPTED IN THE CURERT LIFT. CURE
 COMPRESIIVE STRENGTH
4.1 Storing and handung

STore and handle soll nals in a manner that avoids damage or
 4.2 fabrication.
provide nalls threaded a minmum of 6 inches to allow proper ATTACHMENT of bearing plate and nut. Threading may be continuous STAL Derormed ribeng provide by the bar deformations or may be cut CIO THE REINFORCING BAR. WHEN APPROPRSATE, REPAIR DAMAGE TO THE EPOXY
 0 FEET APART AND WTHIN 24 INCHES RROM THE TOP AND BOTTOM OF THE NAL. USE CENTRAlZE
INTO THE DRILL HOLE.

SRIL 5 IN. (MINMUM) DIAMETER HOLES FOR THE SOIL NALS AT THE LOCATOUS
NND TO THE AND TO THE ORENTATION SHOWN ON THE PLANS. SELECT DRLLING EEOUPMENT
AND METHODS SUTABIE FOR THE GROUND CONDITONS
 TNSTABLE GROUND IS ENCOUNTERED, USE CASED DRILLNG METHODS TO SUPPORT
THE CIRCUFERENCE OF THE DRILL HOLES. SELF-DRILING NALIS ARE NOT

OUNER	
为 515	Heume

Dosignod By: JAF
Checked By: SEK
Scale:

. 3 VERPICATION TEST.

PERFORM VERIICATION TESTS ON SACRIFICIAL TEST NALLS AT LOCATONS SHOW NTHE PLANS. PERFORM VERRICATION TESTS BEFORE INSTALLATION OF
Roducton NALLS TO VERIFY DRILING AND INSTALIATION METHODS, NALI
pullout resistance, and design assumptions.
PERFORM TESTS BY INCREMENTALLY LOADING THE VERIFICATION TEST NALLS AS NDICATED IN TABLL 2. MEASURE AND RECORD SIIL NALL MOVEMENT AT EACH OAD INCREMENT. THE AlIGNMENT LOAD IS THE MINMUM LOAD REQured TO
ALIGN THE TESTING APPARATUS AND SHOULD NOT EXCEED 5 PERCENT OF THE DESIGN TEST LOAD. SET DIAL GAUGES TO "ZERO" AFTER APPLYING THE ALGGMENT LOAD. FOLOWING APPLICATION OF THE MAXIMUM LOAD, REDUCE
THE LOAD TO THE ALIGNMENT LOAD AND RECORD THE PERMANENT SET. HOLD THE LOAD TO THE ALIGNMENT LOAD AND RECORD THE PERMANENT SET. HOLD
EACH LOAD INCREMENT FOR AT LEAST 10 MINUTES. MONITOR THE VERFICATIO EALH
TEST NAL FOR CREEP AT THE 1.50 DTL LOAD INCREMENT BY MEASURING AND
RECORDING NAIL MOVEMENT AT 12.5 IT RECORDING NAL MOVEMENT AT $1,2,3,5,6,10,20,30,50$ AND 60 MINUTES
MAIITAIN THE LOAD DURING THE CREEP TEST WTHIN 2 PERCENT OF THE
INTENDED LOAD BY USE OF THE LOAD CELL.
table
erricication test load schedule

TEST LOAD INCREMENT	HOLD TMME (MINUTES)
AL (0.05DTL MAX.)	1
$0.25 D T L$	10
$0.500 T L$	10
0.75 TL	10
$1.000 T L$	10
$1.250 T L$	10
$1.500 T$ (CREEP TEST)	60
$1.75 D T L$	10
2.000TL (MAXIMUM LOAD)	10
AL	1

IEM SPECIAL - VERIICATION TEST SOH Na
measure verifcation test nalls by the unit of each nall. do not measure FALED VERIFICATION TEST NAILS OR ADOITTONAL VERFICAIIIN TEST NALLS INSTALLED 1.4 ACCEPTANĆE.
diteria in talls will be evaluated based on the
f a proof test falls, replace all of the installed production nalls between THE EALLED PROOF TEST NAIL AND THE NEXT PROOF TEST NALL IN THE ROW, AS Io ENSURE THAT THE ACCEPTANCE CRITERIA IS BEING MET WITHN THIS AREA. PROPOS AL TERNATVE WETHODS BEFORE WSTAU NG ADDITIONAL SOHI NAMS

$\begin{aligned} & \text { TYPE OF } \\ & \text { NALL TEST } \end{aligned}$	TOTAL CREEP (1) MAXIMUM LOAD (1)	$\begin{aligned} & \text { TOTAL } \\ & \text { MOOEMENT } \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & \text { PULLOUT } \\ & \text { (ALIUNE } \\ & \text { (3) } \end{aligned}$
Proof	$\begin{aligned} & <0.040 \text { INCHES } \\ & \text { BETWEENCHES } \\ & 1 \text { AND } 10 \mathrm{MIN} \text { OR } \end{aligned}$	>80\%	No
	$\begin{aligned} & <0.080 \text { iNCHES } \\ & \text { BETWEEN } \\ & 6 \text { AND } 60 \text { MIN(1) } \end{aligned}$		

(1) and the creep rate is linear or decreasing throughout the creep test OAD HOLD PERIOD.
2) PERCENT OF THE
(2) Percent of the theoretical elastic elongation of the test nall
3) PULLOUT FALLURE IS DEFINED AS THE INABILTY TO FURTHER INCREASE THE TEST LOAD WHILE THERE IS CONTNUED PULLOUT MOVEMENT OF THE TEST NALL VERIICATION TEST FALLS, PROPOSE ALTERNATE INSTALLATION METHODS BEFORE NSSTALLING adDITIONAL VERIFICATION TEST NALLS AND INSTALL A REPLACEmENT
VERFICATION TEST NALL.
2.0 METHOD OF MEASUREMENT
fem special - retaining wall misc: s soll nall proof tests measure so NAIL PROOF TEST BY UNITS OF EACH TEST FOR EVERY TEST ACCEPTED BY THE PROJECT NGINEER.
3.0 PAYMENT
the accepted quantites wil be paid for at the contract unt price per UNIT OF MEASUREMENT FOR THE PAYITEMS LSTED IN THE BID SCHEDULE,

| ITEM | DESCRIPTION | UNIT |
| :--- | :--- | :--- | :--- |
| SPECIAL | RETAING WALL MISC:: SOIL NALL PROOF TESTS | EA. |

ITEM- SPECIAL, RETAINING WALL, MISC. : SHOTCRETE FACING
CONSTRUCTION - shotcrete

PROVIDE CONSTRUCTION SHOTCRETE FACING AS SHOWN ON THE PLANS. WHERE HOTCRETE IS USED TO COMPLETE THE TOP UNGROUTED ZONE OF THE NALL DRLLL OO COMPLETELY FILL THE VOID.
2.0 materials

MINMUM MATERIL LSST

3.0 EQUPMENT
3.1 WATER SUPPLY SYSTEM.

For dry mix, provide a water storage tank at the job site. provide a OSITVE DISPLACEMENT PUMP WTH A REGULATING VALVE THAT IS ACCURATELY CONTROLLED TO PROVIDE WATER in the pressures and volumes recommended
3.2 MIXING.

USE Equipment capable of handling and applying shotcrete containing the SPECIFIID MAXIMUM SIZE AGGREGTEE AND ADMIXTURES PROVIDE AN AR HOSE AN
BLOWIIP TO CLEAR DUST AND REBOUND DURING SHOTCRETE APPLICATION.
3.3 AR SUPPLY SYSTEM

USE AN AR SUPPLY SYSTEM CAPABLE OF SUPPLYING THE DELIVERY MACHINE AND HOSE WTH AR AT THE PRESSURES AND VOLUMES RECOMMENDED BY THE MACHIN
 3.4. DELIVERY MACHINE.

USE A DELIVERY MACHINE CAPABLE OF SUPPLYING MATERIAL TO THE DELIVERY HOSE AT A UNIFORM RATE. THE EJECTION FROM THE NOZZLE MUST ADHERE TO THE
REATED SUPFACE WTH MINMUM REBOUND AND MAXMUM DENSITY WHEN THE nozzle is , held in the range of 3 to 6 ft from the target surface.
4.0 COMPOSITION (SHOTCRETE MIX DESIGN)

DESIGN AND PRODUCE SHOTCPETE WUTURES CONFORUNG TOTAEL TYPE OF SHOTCRETE USED. USE THE AMOUNT OF WATER REQUIRED TO UNFORMITY WTH THE OF SUITABLE STRENGTH, CONSIITENCY, QUALITY, AND TYPES AND SOURCES AS SUBMITED WTH THE MIX DESIGN IN THE FIELD TRIALS AND
 recommended by the manufacturer.
2. Hydration stabilizing admixtures - hydration stabilizing admixtures may BE USED TO EXTEND THE ALLOWABLE DELIVERY TME FOR SHOTCRETE. DOSAGE IS
BASED ON THE TMME NEEDED TO DELAY THE INTTAL SET OF THE SHOTCRETE FOR DELIVERY AND DIISCHARGE ON THE JOB. DESIGN SHALL INCLUDE DHCCHARGE TME SHALL THE DETERMIIED SUBMITTAL. DOSAGE REQUIRED TO STABIIIZE SHOTCRETE XXENDED-SET ADMIITURE SHAL SITE MATERIAL AND FIELD TRIAL MIXTURES. THE IINERALS AND GYPSUM. THE MAXIMUM ALIOWABIE DESIGN DISCHARGE TME IS 3.50 Hours.
3. dosage and type of extended - set admixture shall be included with PROPOSED MIX DESIGN. WHEN REQUESTED, THE ADMIXTURE MANUFACTURER SHALL PROVIDE THE SERVICE OF QUALIFIED PERSON TO ASSIST IN ESTABLISHING THE PROPER DOSE OF EXTENDED-SET ADMIXTURE AND MAKE DOSAGE ADJUSTMENTS
REQURED TO WET ANY CHANGUG JOB STE CONOTIONS
TABLE 4

Type of Shotcrete Process	Minimum Cement Content ($1 \mathrm{~b} / \mathrm{Cy}_{3}$)	Maximum W/C (1) Ratio	Air Content Range (\%)	Minimum 28-Day Compressive Strength(3) (psi)
WET	550	0.55	NA	4000
DRY	550	0.5	NA	4000
WET(W/EA) 2]	550	0.45	MIN. 5	4000
DRY(W/EA) R	550	0.45	MIN. 5	4000
(1) $\mathrm{W} / \mathrm{C}=$ WATER /CEMENT (BY WEIGHT). (2) EA = EnTRANED ART				

APPROVED: HOWARD COUNTY DEPARTMENT OF PLANNING AND ZONING \qquad and	No.	Data	Revision	By	HITTOOR REDEVELOPMEN TAX MAP: 25 PARCELS: 12,291 2ND EECTION DISTRICT BLOCK: 07 ZONINGS: R-VH, R-A-15, POR			HARDIN-KIGHT ASSOCIATES, INC GEOTECHNICAL CONSULTANTS T524 WBEA ROAD, SUTIT 100 $\stackrel{(410)}{(410)} 5535080008$	$\begin{array}{\|c} \text { Designed By: } \\ \hline \text { JAF } \end{array}$	$\begin{array}{\|l} \text { Twiv: } \\ \hline \begin{array}{c} \text { Propect } \\ \text { RO } \end{array} \\ \hline \end{array}$	Retaining Wall \#1 SPECIFICATIONS 2	$\begin{aligned} & \text { Date: } \\ & \text { June 25, } 2011 \end{aligned}$
	1	08/16/2011	Renseb cruong plav. Revsed facme chance Page numer.	Jaf								
	2	0907/2011	Renseo TME	${ }^{\text {asf }}$							ROGER CARTER RECREATION CENTER - GARAGE RETAIING WALL PLANS AND DETAILS RETAIING WALL \#1	Probect $\mathrm{N}:$ 11150
	4	01/0517	Revise Sheet number	Vogel					Scale: NTS OR AS SHown			$\begin{aligned} & \text { Drawing No: } \\ & 32 \cap F 5 \cap \end{aligned}$

5. 4 CONSTRUCTION FACING TOLERANCES.

CONSTRUCTION TOLERANCES FOR THE SHOTCRETE FACING FROM PLAN LOCATION
AND PLAN DIMENSIONS ARE AS FOLLOWS:

1. HORIZONTAL LOCATION OF WELDED WRE MESH AND HEADED STUDS: 0.4 inCH
2. HORIZONTAL LOCATION OF WELDED WRE MESH AND HEADED S
3. LCCATION OF HEADED STUS ON BEARING PLATE: 0.25 ICH
4. SPACING BETWEEN REINFORCING BARS: 1-INCH:
5. REINFORCING LAP, FROM SPECIFIED DIMENSION: $1-$ INCH.
6. REIFORCING LAP FROM SPECIFED DIME

IF TROWELED OR SCREEDED: $0.6-$ INCH.
PLANEESS OF FINSH FACE SURFACE-GAP UNDER 10-FT STRAIGHTEDGE
6. Nall head bearing plate deviation from parallel to wall face: 10
degrees

APPROVED: HOWARD COUNTY DEPARTMENT OF PLANNING AND ZONING	No.	Datio	Revision	вy
	1	108/16/2011	reised draing pan. rensed facma. Chance Page nmers.	${ }_{\text {jaf }}$
omso	2	09/07/2011	revsed time	${ }_{\text {jaf }}$
sler	3	10/2011	REvSED For MIAR WHT WIT STMM	JAF
noman	4	0110517	REVISE SHEET NUMBER	Vogel

5.5 RETAINING WALL. MISC: SHOTCRETE FACING CONSTRUCTION.

SUBMIT FOR APPROVAL, ALL MATERIALS, METHODS, AND CONTROL PROCEDURES FO THIS WORK.
6.0 METHOD OF MEASUREMENT

SHOTCRETE SHALL BE MEASURED PER EACH SQUARE FOOT OF NOMINAL 4-INCH
THCKNESS OF SHOTCRETE AUTHORIZED AND ACCEPTED THICKNESS OF SHOTCRETE AUTHORIZED AND ACCEPTED,
7.0 PAYMENT

THIS ITEM SHALL BE PAID AT THE CONTRACT UNIT PRICE AND SHALL INCLUDE AL
TABOR EOUMENT AND MALERALSNECSSARY TO COMPLETE THE WORK. THE
BASIS' OF PAMMENT SHALL BE AS FOLEWS:
$\begin{array}{lll}\text { IIEM } & \text { DESCRIPTION } & \text { UNIT } \\ \text { SPECIAL RETAING WALL, MISC:: } & \text { SHOTCRETE FACING CONSTRUCTION } & \text { SQ FT }\end{array}$
ITEM - SPECIAL, RETAIIING WALL, MISC. : GEOCOMPOSITE WALL 1.0 DESCRIPTION OF WORK
1.0 DESCRIPTION OF work.
install and secure all elements of the wall drainage network as shown ON THE PLANS. THE DRANAEE NETWORK SHALL CONSIST OF INSTALLING SHO GEOCNP OSITE DREAN PANELS, PVC OR ABS CONNECTON PIPESS, WALL FOOTTNG
GRANS, AND WEPHOLES AS SHOWN ON THE PLANS. EXCLUSIVE OF THE WALL DRAINS, AND WEEPHOLES AS SHOWN ON THE PLANS. EXCLUSIVE OF THE WALL
FOOTNG DRANS AND WEEPHOLES, ALL ELEMENTS OF THE DRAINGE NETWORK SHAIL FE INSTALLED PRIOR TO SHOTCRETNG.
2.0 geocomposite drainage

Manufactured with a drainage core and a drainage geotextle attached TO OR ENCAPSULATING THE CORE. DRAINAGE CORE TTA BE MANUFACTURED FRRM
LONG CHAIN SYNTHETIC POLYMERS COMPOSED OF AT LEAST 85 PERCENT BY MASS OF POLYPROPYLENES, POLYESTER, POLYAMINE, POLYYINYL CHLORIDE,
POLYOLEOFIN, OR PI YSTYENENE AND HAVING
STRENGTH OF 40 PSI WHEN TESTED IN ACCORDANCE WTH COMPRESSIVE
PROCEDURE A. THE DRAINGGE CORE WTTH THE GEOTEXTLE FULLY ENCAPSULATING THE CIRE SHALL HAVE A MINIMUM FLOW RATE OF 12.5 GALLONS PER MINUTE PER FOOT OF WDTH TESTED IN ACCORDANCE WITH ASTM D 4716. THE TEST CONDITIONS
SHALL BE UNDER AN APPLIED LOAD OF 10 PSI AT A GRADIENT OF 1.0 AFTER A 100-HOUR SEATING PERIID.
the geocomposite drain layer is a two-part prefabricated sheet drain, WHICH CONSISTS OF A FORMED POLYSTYRENE CORE COVERED WTH A NONWOVEN NEEDLE-PUNCHED POLYPROPYLENE FLLTER FABRIC ON THE DIMPLE SIDE OF THR
CORE. THE FABRIC ALLOWS WATER TO PASS INTO THE DRAIN CORE. THE CORE ALLOWS THE WATER TO FLOW TO DESIGNATED DRAINAGE EXITS. MATERIAL WLL
MEET THE REQUREMENTS OF AMERICAN WCK DRAIN CORPORATION'S AMERDRAIN MEET THE REQUIREMENTS OF AMERICAN
SITERRAN C-90 OR APRROVED EQUAL.
2.1 GEOCOMPOSITE CHIMNEY DRAIN SYSTEM
install vertical drain strips centered between the columns of nalls
 AS SHOWN ON THE PLANS. THE DRAIN STRIPS SHALL BE AT LEAST 6 OR 12 IN. WDDE
(AS INDICATED ON THE PLAN) AND PLACE WTH THE GEOTEXTLE SIDE AGAINST THE GROUND. SECURE THE STRIPS TO THE EXCAVATION FACE AND PREVENT SHOTCRETE ROM CONTAMINATING THE GEOTEXTLE. TO ATTACH DRAIN TO BARE EARTH, USE
$4^{\prime \prime}-8^{\prime \prime}$ ANCHOR PINS WITH WASHERS. DRAIN STRIPS WILL BE VERTICALY CONTINO MAKE SPLICES WTH A 12 IN. MINIMUM OVERLAP SUCH THAT THE FLOW OF WATER IS OT IMPEDED. REPAIR DAMAGE TO THE GEOCOMPOSITE DRAIN STRIP, WHHCH MAY NTERRUPT THE FLOW OF WATER.
NSTALL HORIZONTAL DRAINS AT THE BOTtTOM OF THE WALL AS SHOWN ON SHEETS 25 - 27 . ATtACH THEM TO THE DRAIN STRIPS. HORIZONTAL DRAIN SECTION
SHALL BE AT LEAST 12 IN. TALL AND PLACED WTH THE GEOTEXTLE SIDE AGANST THE GROUND. SECURE THE STRIPS TO THE EXCAVATION FACE AND PREVENT SHOTCRETE RROM CONTAMINATING THE GEOEXTLIE. TO ATTACH DRAAN TO BARE
ARTH, USE 4"- $8^{\prime \prime}$ ANCHOR PINS WITH WASHERS. THE CONNECTIN BETWEEN EARTH, USE $4^{4 \prime-} 8^{\prime \prime}$ ANCHOR PINS WTH WASHERS. THE CONNECTION BETWEEN
VERTCAL DRAINS AND HORIZONTAL STRIP DRAINS WILL BE VERTCALIY CONTINOOUS, MAKE SPLICES WTH A 12 IN . MINIMUM OVERLAP SUCH THAT THE FLOW OF WATER S NOT MPEDED. INSTALL DRAIN GRATE AND CONNECTOR PIPE OR UNIVERSAL TEE OUTLET AT BASE OF EACH STRIP. REPAIR DAMAGE TO THE GEOCOMPOSITE DRAIN

2.2 DRAIN GRATE.

attach the outlet drain to geocomposite drain strip followin MANUFACTURER'S RECOMMENDATIONS DRAN GRATES SUCH AS AMERICAN WICK USE RAZOR KNIFE AND CUT A V NOTCH IN THE BOTTOM PORTION OF THE STRIF DRAIN APPROXIMATELY 3 INCHES WIDE AT THE BOTTOM AND 4 INCHES HGH AND DISCARD.
3.0 METHOD OF MEASUREMENT
drainage shall be measured per fach square foot of materhe
AUTHORIZED AND ACCEPTED.
4.0 PAYMENT

This item shall be paid at the contract unit price and shall include ALL LABOR, EQUPMENT, AND MATERIALS NECESSARY TO COMPLETE THE work. The basis of payment shall be as follows:
$\begin{array}{ll}\text { ITEM } & \text { DESCRIPTION } \\ \text { SPECIAL } & \text { RETAIING WALL MISC:: GEOCOMPOSITE WALL DRAINAGE } \\ \text { SQ FT }\end{array}$
estimated quantities - soll nail wall: to be provided upon request

PLayground area layout notes
Suffaing: Enire area within fon ning to reaive ADA Accessibile Satey Surfacing

4. Benches by Gametime, Straight Leg Paak Bench, Douglas fi. In ground mount. 3 total Benches @ 6^{\prime} '(PP4066). 2 total Benches © 8 '(H1067).
5. Bike Rack: By Gamelime, Loop Bike Rack, Surface Mount 7 Bikes, Blue (\#F7702)
. Conceate Pever Connecoror Hanover Cid \qquad
and

(1) DETAILED LAYOUT PLAN - PLAYGROUND AREA

atio area layout notes
Concriete
Enire area within walk and Fencingto receive ADA Accesssible Safery Surfacing

3. Benches by Gametime, Straight Leg Pakk Bench, Douglas Firi. In ground mount: 2 total © © 8 ' (\#\#067).

PLANT SCHEDULE

MENT

\％		mismeme
arame		
込	＋1meme	－
		部mome
	\％mumers	
	1．0．emememex	－
Nosmosame	走memere	
		－${ }_{\text {mumener }}$
	\cdots	－mix mex

（

General Landscape Notes

Installer is responsible for familiarizing him／herseff with project conditions beyond specific planting work to ensure proper coordination and prevent any
Subsurface irigatioh is not included in the project．Contractor is responsible for maintaining water source for vegetation included in the Planting Plan and
Plant Schedule．
3．Installer is responsible for ensuring that the grading indicated on the Civil Engineering drawings has been achieved before beginning any staking or
Provide positive drainage away from all building structures．
5．Landscape Architect shall approve staking before any planting．Staking approvals shall occur per the＂Planting Timetable＂submittal required per the 2 weeks in advance．
 Contractor will be strictly held to the requirements for＂Installer Qualifications＂noted in Plants Specifications 329313 ，including years of experience and
project examples for successful wetland and meadow installation．

9．All areas within Limit of Disturrancee not specifically indicated to receive planting or sod as noted in 25.00 series drawings（Landscape Drawings）shall be
10．Al Micro－Biorotention Areas（MBRs）shall receive no less than 2＂and no more than $3^{\prime \prime}$ of mulch over entire area，and all planting beds shall receive no less
than 2＂and rot more than 3 ＂of mulch over entire bed，mulch type appropriate to the life neels of the plant（hardwood vs．pine bark）．
11．All plantings shown on the plans with layouts in rows or areas shall constiute a planting bed，and all planting beds shall receive no less than $2^{\prime \prime}$ and not
more than $3^{\prime \prime}$ of mulch over entire bed，mulch type appropriate to the life needs of the plant（hardwood vs．pine bark）．
12．For all shrub and／or groundcover plantings adiacent to buildings，the mulched bed shall be understood as the area from the outermost edge of plant to the
face of the building，and said area shall receive mulch．
13．Final location of plant material may need to vary to meet final field conditions．
14．Contractor shall verify location of all underground utilities prior to digging．
15．All planted areas shall receive topsoil per Specifications Section 02911
－For Podium area，see notes on Sheet 37 ．
－For areas receiving seeded grass or sod（excluding the Podium area），topsoil shall be a minimum of 6 ＂
－For areas to be planted with herbaceous and woody plants，topsoil shall be a minimum of 6 ＂
16．Contractor is responsible for ensuring 2 －weeks＇notice to obtain Landscape Architect＇s approval of staking before planting

MEADOW PLANTIN

A．Plan to seed meadow between 15 March and 30 April．If this time period cannot be met due to construction （15 September through 31 October）or Summer（1 May through 15 September）is possibile Note that plating in
B．Establish proper soil mix．
C．Plant all trees before final meadow soil preparation and seeding
D．Planting Preparation：Eliminate weeds（including grass）before seeding
1．Closely mow the area to stimulate weed growth at least two weeks before herbicide application．
2．Eradicate all existing vegetation by having a licensed spray technician apply an approved glyphosate
3．Protect trees from herbicide within meadow area，adjacent wetland plants，and adjacent existing plants．
4．Repeat herbicide spraying in approximately two weeks with adjustments for weather
5．If weeds reoccur within two weeks，apply a third herbicide treatment
E．Seed：Seed meadow according to seed provider＇s instructions，including light raking and rolling．
Water：Installer is responsible for ensuring the availability of a daily water source from planting until 30 days after ose watering or systems that create visually perceivable drainageways within the meadow will be accepted and
．Thoroughly water after seeding
2．Keep the meadow moist for 2 to 4 weeks after seeding．
G．Fertilizer：Do not fertilize．
H．Mowing：Do not mow until the following winter
Meadow Maintenance：
1．Remove woody plants by cutting or digging when they are first observed
2．Remove colonial broadleaf weeds（including thistle，dogbane，and certain goldenrods）with appropriate
3．Remove non－colonial broadleaf weeds that grow less than 2 feet tall（including dandelion，plantain，and dock）
4．Remove bunchgrass weeds（including orchardgrass and tall fescue）by hand or appropriate herbicide when
5．Remove annual grass weeds（including goosegrass and giant foxtail）with appropriate herbicides when they
are first observed．
6．Remove annual broadleaf weeds（including ragwort，marestail，lambsquarters，and pigweed）by hand when
they are first observed or by cutting their stems low to the ground before they set seed． 7．During prolonged drought，water deeply once or twice during drought to maintain flowering and live green
groundcover of meadow．
8．Mow between late November and early March to a height of 7 to 10 inches with a rotary or flail mower
Disperse cuttings so that overwintering so that plants are not matted under thick clumps of debris． 9．Do not mow after eariy March．

DEVELOPER＇S／BULLDER＇S CERTIFICATE 	
Homme count ofewner of pumanc mo	
cils	

