TABLE 1
STRAY CURRENT INVESTIGATION
ROSETTE TEST DATA (Millivolts)

Direction	Test Location Station 1+10
0 Degrees	4.70
45 Degrees	-3.30
90 Degrees	-3.40
135 Degrees	-2.90
180 Degrees	9.60
225 Degrees	4.50
270 Degrees	-6.50
315 Degrees	-15.20
Resultant	20.12
Direction	161.8°

Analysis of the above data indicates that no significant stray current activity presently exists along the pipeline right-of-way.

5.2 Field Soil Resistivity

The ability of an electrolyte to conduct current is primarily governed by resistivity, which is expressed in ohm-centimeters. Generally, the lower the resistivity, the more corrosive the environment. More specifically, resistivities below 2,000 ohm-centimeters are very corrosive to ferrous metals, whereas values above 10,000 ohm-centimeters are mildly corrosive. Common soil resistivity classifications are shown in Table 2.

TABLE 2
SOIL CORROSIVITY/SOIL RESISTIVITY

Soil Corrosivity	Soil itResistivy Ohm-Cm)
Very Corrosive	0 to 2,000
Corrosive	2,000 to 5,000
Moderately Corrosive	5,000 to 10,000
Mildly Corrosive	Over 10,000